- public class Crypt {
- static int sub[] = new int[48];
- // TABLES
- /* Expansion table (32 to 48) */
- int E_p[] = {
- 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
- 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
- 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
- 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
- };
- /* Permutation Choice 1 for subkey generation (64/56 to 56) */
- int PC1_p[] = {
- 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
- 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
- 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
- 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
- };
- /* Permutation Choice 2 for subkey generation (56 to 48) */
- int PC2_p[] = {
- 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
- 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
- 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
- 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
- };
- /* Number of rotations for the iteration of key scheduling */
- /* The concept of a table here doesn't fit our behavioral model */
- /* This will be logic in our final design */
- int keyrots[] = {
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
- /* Selection blocks
- * There are 8 sblocks, each of which is referenced by a 2 bit value
- * which picks the row, and a 4 bit value which picks the column
- * This number is then the 4 bit output for that select block
- */
- int sblocks[][][] = {
- {
- {
- 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7}
- , {
- 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8}
- , {
- 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0}
- , {
- 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}
- }
- ,
- {
- {
- 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10}
- , {
- 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5}
- , {
- 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15}
- , {
- 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}
- }
- ,
- {
- {
- 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8}
- , {
- 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1}
- , {
- 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7}
- , {
- 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}
- }
- ,
- {
- {
- 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15}
- , {
- 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9}
- , {
- 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4}
- , {
- 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}
- }
- ,
- {
- {
- 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9}
- , {
- 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6}
- , {
- 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14}
- , {
- 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}
- }
- ,
- {
- {
- 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11}
- , {
- 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8}
- , {
- 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6}
- , {
- 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}
- }
- ,
- {
- {
- 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1}
- , {
- 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6}
- , {
- 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2}
- , {
- 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}
- }
- ,
- {
- {
- 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7}
- , {
- 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2}
- , {
- 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8}
- , {
- 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
- }
- };
- /* Permutation P for after sblocks */
- int P_p[] = {
- 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
- 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
- };
- /* Inverse permutation of IP for end
- * Temporary - the true behavior will be implemented in a shift out register
- * (Look at the pattern obvious in an 8x8 layout)
- */
- int IPinv_p[] = {
- 40, 8, 48, 16, 56, 24, 64, 32,
- 39, 7, 47, 15, 55, 23, 63, 31,
- 38, 6, 46, 14, 54, 22, 62, 30,
- 37, 5, 45, 13, 53, 21, 61, 29,
- 36, 4, 44, 12, 52, 20, 60, 28,
- 35, 3, 43, 11, 51, 19, 59, 27,
- 34, 2, 42, 10, 50, 18, 58, 26,
- 33, 1, 41, 9, 49, 17, 57, 25
- };
- // CODE
- private void pr_bits(int[] s, int amt) {
- amt /= 8;
- for (int i = 0; i < amt; i++) {
- int x = 0;
- for (int j = 0; j < 8; j++) {
- x |= s[i * 8 + j] << (7 - j);
- }
- Integer integ = new Integer(x);
- System.out.print(integ.toString(x, 16) + " ");
- }
- System.out.println();
- };
- private void permute(int[] by, int amt, int[] in, int[] out) {
- for (; --amt >= 0; ) {
- out[amt] = in[by[amt] - 1];
- }
- };
- private void do_sblocks(int[] in, int[] out) {
- for (int i = 0; i < 8; i++) {
- int val = sblocks[i]
- [in[i * 6] << 1 | in[i * 6 + 5]]
- [in[i * 6 + 1] << 3 |
- in[i * 6 + 2] << 2 |
- in[i * 6 + 3] << 1 |
- in[i * 6 + 4] << 0];
- out[i * 4 + 0] = val >> 3 & 1;
- out[i * 4 + 1] = val >> 2 & 1;
- out[i * 4 + 2] = val >> 1 & 1;
- out[i * 4 + 3] = val >> 0 & 1;
- }
- };
- private int ascii_to_bin(char c) {
- if (c >= 'a') {
- return (c - 59);
- }
- if (c >= 'A') {
- return (c - 53);
- }
- return (c - '.');
- };
- private char bin_to_ascii(int c) {
- if (c >= 38) {
- return (char) (c - 38 + 'a');
- }
- if (c >= 12) {
- return (char) (c - 12 + 'A');
- }
- return (char) (c + '.');
- };
- private void load_salt(int[] saltmask, char[] salt) {
- int tot = ascii_to_bin(salt[0]) | (ascii_to_bin(salt[1]) << 6);
- for (int i = 0; i < 12; i++) {
- saltmask[i] = tot >> i & 1;
- }
- };
- private void do_salt(int[] bits, int[] saltmask) {
- for (int i = 0; i < 12; i++) {
- if (saltmask[i] != 0) {
- int t = bits[i];
- bits[i] = bits[24 + i];
- bits[24 + i] = t;
- }
- }
- };
- private void load_key(int[] ikey, char[] password) {
- int tmp[] = new int[64];
- for (int i = 0; i < 8; i++) {
- for (int j = 0; j < 8; j++) {
- tmp[i * 8 + j] = (password[i] >> (6 - j)) & 1;
- }
- }
- permute(PC1_p, 56, tmp, ikey);
- };
- private void subkey(int[] ikey, int iter) {
- int rots = keyrots[iter];
- int tmp0l = ikey[0];
- int tmp1l = ikey[1];
- int tmp0r = ikey[28];
- int tmp1r = ikey[29];
- for (int i = 0; i < 28 - rots; i++) {
- ikey[i] = ikey[i + rots];
- ikey[28 + i] = ikey[28 + i + rots];
- }
- if (rots == 2) {
- ikey[26] = tmp0l;
- ikey[27] = tmp1l;
- ikey[54] = tmp0r;
- ikey[55] = tmp1r;
- }
- else {
- ikey[27] = tmp0l;
- ikey[55] = tmp0r;
- }
- permute(PC2_p, 48, ikey, sub);
- };
- private void xor(int[] src1, int[] src2, int index, int num) {
- for (int i = 0; i < num; i++) {
- src1[i] = (src1[i] ^ src2[index + i]) & 1;
- }
- };
- private void print_bits(int[] s, int amt) {
- for (int i = 0; i < amt; i++) {
- System.out.print("" + s[i]);
- }
- System.out.println("");
- };
- private void do_f(int[] in, int index, int[] out, int iter, int[] ikey,
- int[] saltmask) {
- int tmp48[] = new int[48], tmp32[] = new int[32], skey[];
- for (int i = 0; i < 32; i++) {
- tmp32[i] = in[i + index];
- }
- permute(E_p, 48, tmp32, tmp48);
- do_salt(tmp48, saltmask);
- subkey(ikey, iter);
- skey = sub;
- xor(tmp48, skey, 0, 48); // Goed
- do_sblocks(tmp48, tmp32);
- permute(P_p, 32, tmp32, out);
- };
- private char[] mycrypt(char[] password, char[] salt) {
- int bits[] = new int[64];
- int outl[] = new int[32];
- int outr[] = new int[32];
- int done[] = new int[66]; // In c-code array-size was 64 !?!
- int ikey[] = new int[56];
- int saltmask[] = new int[12];
- char[] answer = new char[14];
- for (int i = 0; i < 64; i++) {
- bits[i] = 0;
- }
- load_key(ikey, password);
- load_salt(saltmask, salt);
- for (int dess = 0; dess < 25; dess++) {
- for (int iters = 0; iters < 16; iters += 2) {
- do_f(bits, 32, outl, iters, ikey, saltmask);
- xor(outl, bits, 0, 32);
- do_f(outl, 0, outr, iters + 1, ikey, saltmask);
- xor(outr, bits, 32, 32);
- if (iters != 14) {
- for (int i = 0; i < 32; i++) {
- bits[i] = outl[i];
- bits[i + 32] = outr[i];
- }
- }
- else {
- for (int i = 0; i < 32; i++) {
- bits[i] = outr[i];
- bits[i + 32] = outl[i];
- }
- }
- }
- }
- permute(IPinv_p, 64, bits, done);
- answer[0] = (char) salt[0];
- answer[1] = (char) salt[1];
- for (int i = 0; i < 11; i++) {
- char c = 0;
- for (int j = 0; j < 6; j++) {
- c |= done[6 * i + j] << (5 - j);
- }
- answer[i + 2] = bin_to_ascii(c);
- }
- return answer;
- };
- /**
- * This method decodes the given password
- * Encryption is based on the one way DES encryption
- * @return The encrypted password
- * @param passwd is the password to encrypt
- * @param s is salt
- */
- public String decode(String passwd, String s) {
- char[] password = new char[9];
- char[] salt = new char[3];
- String uitkomst;
- passwd.getChars(0, passwd.length() >= 8 ? 8 : passwd.length(), password, 0);
- s.getChars(0, 2, salt, 0);
- uitkomst = new String().valueOf(mycrypt(password, salt));
- return uitkomst;//(uitkomst.substring(0, 13));
- }
- };
复制代码
好像不对,哪位大侠帮帮我 |