LinuxSir.cn,穿越时空的Linuxsir!

 找回密码
 注册
搜索
热搜: shell linux mysql
查看: 224|回复: 0

遗传算法 符号回归问题

[复制链接]
发表于 2024-1-9 16:31:56 | 显示全部楼层 |阅读模式

符号回归问题
这是遗传编程中最著名的问题之一。 所有符号回归问题都使用任意数据分布,并尝试用符号公式来拟合最准确的数据。 通常,像RMSE(均方根误差)这样的度量用于度量个体的适应度。 这是一个经典的回归问题,这里我们使用方程:5x3-6x2 + 8x = 1。 我们需要按照上述示例中的所有步骤进行操作,但主要部分是创建基元集,因为它们是个人的构建基块,因此可以开始评估。 这里将使用经典的基元集。
以下Python代码详细解释了这一点 -

import operator
import math
import random
import numpy as np
from deap import algorithms, base, creator, tools, gp
def division_operator(numerator, denominator):
   if denominator == 0:
      return 1
   return numerator / denominator
def eval_func(individual, points):
   func = toolbox.compile(expr=individual)
   return math.fsum(mse) / len(points),
def create_toolbox():
   pset = gp.PrimitiveSet("MAIN", 1)
   pset.addPrimitive(operator.add, 2)
   pset.addPrimitive(operator.sub, 2)
   pset.addPrimitive(operator.mul, 2)
   pset.addPrimitive(division_operator, 2)
   pset.addPrimitive(operator.neg, 1)
   pset.addPrimitive(math.cos, 1)
   pset.addPrimitive(math.sin, 1)
   pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))
   pset.renameArguments(ARG0 = 'x')
   creator.create("FitnessMin", base.Fitness, weights = (-1.0,))
   creator.create("Individual",gp.PrimitiveTree,fitness=creator.FitnessMin)
   toolbox = base.Toolbox()
   toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
   toolbox.expr)
   toolbox.register("population",tools.initRepeat,list, toolbox.individual)
   toolbox.register("compile", gp.compile, pset = pset)
   toolbox.register("evaluate", eval_func, points = [x/10. for x in range(-10,10)])
   toolbox.register("select", tools.selTournament, tournsize = 3)
   toolbox.register("mate", gp.cxOnePoint)
   toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
   toolbox.register("mutate", gp.mutUniform, expr = toolbox.expr_mut, pset = pset)
   toolbox.decorate("mate", gp.staticLimit(key = operator.attrgetter("height"), max_value = 17))
   toolbox.decorate("mutate", gp.staticLimit(key = operator.attrgetter("height"), max_value = 17))
   return toolbox
if __name__ == "__main__":
   random.seed(7)
   toolbox = create_toolbox()
   population = toolbox.population(n = 450)
   hall_of_fame = tools.HallOfFame(1)
   stats_fit = tools.Statistics(lambda x: x.fitness.values)
   stats_size = tools.Statistics(len)
   mstats = tools.MultiStatistics(fitness=stats_fit, size = stats_size)
   mstats.register("avg", np.mean)
   mstats.register("std", np.std)
   mstats.register("min", np.min)
   mstats.register("max", np.max)
   probab_crossover = 0.4
   probab_mutate = 0.2
   number_gen = 10
   population, log = algorithms.eaSimple(population, toolbox,
      probab_crossover, probab_mutate, number_gen,
      stats = mstats, halloffame = hall_of_fame, verbose = True)

请注意,所有基本步骤与生成位模式时使用的步骤相同。 这个程序会给出10代后的输出为min,max,std(标准偏差)。

//更多请阅读:https://www.yiibai.com/ai_with_python/ai_with_python_genetic_algorithms.html


您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表